Nilai lim_(x→2) ⁡(2/(x^2-4)-3/(x^2+2x-8))=⋯

www.jagostat.com

www.jagostat.com

Website Belajar Matematika & Statistika

Website Belajar Matematika & Statistika

Bahas Soal Matematika   »   Limit   ›  

Nilai \( \displaystyle \lim_{x \to 2} \ \left( \frac{2}{x^2-4} - \frac{3}{x^2+2x-8} \right ) = \cdots \)

  1. \( -\frac{7}{12} \)
  2. \( -\frac{1}{4} \)
  3. \( -\frac{1}{12} \)
  4. \( -\frac{1}{24} \)
  5. \( 0 \)

(UN SMA IPA 2004)

Pembahasan:

\begin{aligned} \lim_{x \to 2} \ \left( \frac{2}{x^2-4} - \frac{3}{x^2+2x-8} \right) &= \lim_{x \to 2} \ \frac{2(x^2+2x-8)-3(x^2-4)}{(x^2-4)(x^2+2x-8)} \\[8pt] &= \lim_{x \to 2} \ \frac{2x^2+4x-16-3x^2+12}{(x^2-4)(x^2+2x-8)} \\[8pt] &= \lim_{x \to 2} \ \frac{-x^2 + 4x-4}{(x^2-4)(x^2+2x-8)} \\[8pt] &= \lim_{x \to 2} \ \frac{-(x-2)(x-2)}{(x-2)(x+2)(x+4)(x-2)} \\[8pt] &= \lim_{x \to 2} \ \frac{-1}{(x+2)(x+4)} \\[8pt] &= \frac{-1}{(2+2)(2+4)} = -\frac{1}{24} \end{aligned}

Jawaban D.